Cybersecurity for Future Presidents

Lecture 13: DEBATE #5:

Debate 5: Resolved: Bitcoin transactions are better for consumers than credit card transactions.

Any Questions?

Wed. afternoon, 12-3pm, 442 RH. Signup sheet About previous lecture? circulating

My office hours:

- About homework? (debate questions)
- About reading? (Bitcoin and credit card payment processing)

Reading for next week: 3 papers on cyberattack/cyberwarfare 1. Berson, T.A. and Denning, D.E. "Cyberwarfare,.

- 2. National Research Council, Technology, Policy, Law, and Ethics Regarding U.S. Acquisition and Use of Cyb erattack Capabilities. Chapter 1, pp. 9-23. (Up to Section 1.8).
- 3. Sanger, David. "U.S. Directs Cyberweapons at ISIS for First Time." New York Times, p. 1, 25 August 2016. (available on Canvas)

Exercise for next week: Questions related to the reading and earlier course topics

Cybersecurity events from the past week of interest to future (or current) Presidents:

- Update on \$81M theft from Bengladeshi central bank
 - BAE Systems reports that malware was installed on SWIFT client software to allow thieves to prevent printing of transfer records and to erase records of transfers
 - http://www.reuters.com/article/us-usa-nyfed-bangladesh-malware-exclusiv-idUSKCNOXMODR
- NYT reports on cyberattacks on ISIS
 - Implants reportedly placed on command & control networks
 - No reports of physical damage
- FBI purchase of iPhone zero-day exploit said to cost \$1.3M (=7*\$186,000)

Coming up: ...?

Byzantine Generals (aka Byzantine Agreement)

- 1982 paper by Lamport, Shostak, and Pease
- The scenario: A set of generals, each with his own troops, surround an enemy city. The generals need to agree on a common plan of attack, but some of the generals are traitors and may try to prevent the loyal generals from reaching consensus
 - Desired properties of solution:
 - All loyal generals agree on the same course of action
 - A small number of traitors cannot cause the loyal generals to adopt a bad plan
- · Where this problem came from:
 - Need to provide automated control (e.g. of an airplane) when some components may be faulty, and fail in arbitrarily bad ways
 - Replicated components (e.g. sensors, actuators) correspond to the generals
- How it relates to Bitcoin;
 - Bitcoin needs consensus among miners to agree on which blockchain fork is the right one to build on

Today's Debate

DEBATE #5:

Resolved: Bitcoin transactions are better for consumers than credit card transactions.

A little more motivation for the problem ...

- Suppose you have several replicated computers and several replicated sensors
- Each computer gets input from several sensors (e.g., "hot" or "cold") Computers send messages to each other to try to generate consensus on sensor readings
- Consensus used to instruct actuator (e.g. move up or move down)
- If a computer fails in a bad way, it may send false messages about its sensor readings (inputs) to other computers (and it may "lie" -i.e., tell one computer "hot" and another "cold") = "Byzantine" fault

Blue arrows = input Black arrows = comms Red arrows = output

Key parameter: m = # of traitorous generals

Some other parameters for the problem:

- Messages are sent among generals:
- Synchronous / asynchronous / other?
 Oral (corruptible) or non-oral
- All loyal generals following same protocol?
- Can messages be undetectably modified by adversary?
- ...

Some Basic Results on Byzantine Agreement

- With synchronous oral messages, you need at least $3m\!+\!1$ generals to tolerate m traitors
 - Hence it is impossible to solve this problem with only three generals (= 3 processors)
- So to tolerate one traitor, you need at least 4 generals total
- The problem is much-studied (fun for computer scientists) and there are many different parameters to twiddle
- Bitcoin miners look a bit like the Byzantine generals
 There might be incentives to be a traitor
- Communications are flooded in the bitcoin P2P network (or they are supposed to be)
- Messages are signed, so not as vulnerable as "oral messages" to corruption, but false messages might be introduced
- Bottom line: bitcoin protocol is not a clean abstraction, it's a real protocol. There are informal arguments about its properties but not mathematical proofs, as far as I know.

Bitcoin "multisig" - not really threshold crypto

- You may not want to trust your entire private key to your own machine (what if it gets hacked?)
- · How can you safely share the key with another machine?
- There are "secret sharing" schemes developed in cryptography that enable this kind of behavior
- Bitcoin has implemented something called "multi-sig" that supports this kind of function (e.g., two of three must agree for a transaction to go ahead (or 5 of 6 or other possibilities)
- But this apparently is more like requiring a tuple of signatures on the transaction rather than splitting a secret key into parts and sharing the parts

Backup slides follow

Computing with encrypted data

Zero knowledge proofs (not profs!)

ZKP - a form of interactive proof between a prover and a verifier in which the verifier learns nothing about a specific solution but is convinced the the prover has the information (eg. solution to a Sudoku) in guestion